

Figure 1. LANDSAT view (Photo No
1114407430500, EROS Data-Center, Sioux Falls, South Dakota) of centrala and southern
 miles). The Bac'an Valley stands out cleary as a flat, elliptical plain (marked with a black
arrow) in the midde of the bend in the Wadi
Zarqa, which meets the Jordan River at about Zaraa, which meets the Jordan River at about
$1,000$ ott. (328 m$)$ below sea level. The Dead
Sea is visible at the lower left.
dizing blast of the mouth of the tuye
dizing blast of the mouth of the tuyer
(i.e., in a reducing environment) (i.e., in a reducing environment), ei
ther because of furnace chamber de sign (about which little is known) or the protection afforded by a non tapped slag, tended to possess in allow them to be characterized as true steel. Only regions of the bloom which were directed toward the mouth of the were ferritic or ferritic-pearlitic effe tively yielding a low-carbon wrough iron. The furnace temperatures for his experiment and others describe $1,460^{\circ} \mathrm{C}\left(2,372-2,660^{\circ} \mathrm{F}\right)$, which ac ords with the temperatures hypothe ized for the Baq ah steel artifacts. tion of having been subjected to andica heat treatment, such as quenching or empering, this metal would have had echanical properties (e.g., strength) aberior have made it equal, if no same burial cave.
However one interprets the metal ographic evidence, the prevalence of tentionality, if only at the empirical evel. If so, the question may be raise as to whether the initial impetus fo
the innovation of steel at this time
necessarily involved the mechanical
properties of the properties of the metal. If one follows
the traditional view that the Philistines, one of the "Sea Peoples," introduced ironworking into Palestine near the beginning of the Iron Age, ${ }^{7}$ then it
is a short step to proposing that iron/ steel was of particular importance in conquering the native peoples and and as axes and ploughs to clear for-
ests and till the fields for agriculture)

CULTURAL AND TECHNOLOGICAL CHANGE

There is no doubt that Transjordan underwent a major cultural transformation about this time, with the
collapse of its city-state system and the collapse of its city-state system and emergence of a dispersed network of the preceding Late Bronze Age, a
much lower standard of living and much lower standard of living and
fewer foreign contacts. But none of the fewer foreign contacts. But none of the
iron/steel artifacts from the Baq ah rron/steel artifacts from the Baq ah
are weapons or tools-they are exclu-
sively jewelry items. Theirornamental sively jewelry items. Their ornamental
nature thus suggests that the hardnature thus suggests that the hard-
ness of the metal was less important to the smith than its aesthetic qualities: color, sheen or the jingling sound of a pair of anklets or bracelets worn to
gether. gether.
Where were the iron/steel artifac Where were the iron/steel artifacts
made that have been excavated in central Transjordan? There is no compelling reason for arguing that the
artifacts from the Baq ah burial cave had to be imported. The pottery was apart from marine shells, are of types common enough at other early IronAge sites on the plateau and elsewhere
in Palestine.
It has been argued that the adoption It has been argued that the adoption stages throughout the eastern Medi-
terranean area was encouraged by a
reduced or inconsistent availability of copper and/or tin. ${ }^{8}$ As a result of the socio-political upheavals that charac-
terized the lat terized the last two centuries of the
second millennium B.C., trade routes second millennium B.C., trade routes
would have been cut off,and craftsmen would have turned to alternative metal ores. The consistently high-tin bronzes of the artifacts in the Baq ah
burial cave (averaging $10.6 \% \operatorname{tin}$) conburial cate (averaging $10.6 \% \mathrm{tin}$) con-
trast with the lower tin bronzes (averaging 7.8% tin) of the area's Late Bronze Period (ca. 1550 to 1200 B.C.)
and suggest that the model does not and suggest that the model does not
apply to the Transjordanian plateau. Unless they had a means of enriching the tin contents of recycled older bronzes, the local metalsmiths must
still have had a source of tin still have had a source of tin. Another scenario may be proposed
for the innovation of steel. In the wake of economic and social dislocations at the end of Late Bronze Age, the urban population apparently dispersed into
hinterland areas where alternative subsistence strategies were required. Under these circumstances, iron ores may have been experimented with and anew technology of ironworking may
have been developed, including the steeling of the metal.c.s.3 Although the initial impetus for this innovation may have come from the outside, the availBaq ah suggests that this was a native industry, established near the end of
the Late Bronze Age.

LOCAL IRON ORE

Iron ore deposits of limonite and hematite exist nearby in the Wadi Zarqa and Ajlun areas. ${ }^{9}$ Limited ar-
chaeological investigation in the Ajlun chaeological investigation in the Ajlun Coughenour ${ }^{10}$ has thus far only uncov-

Figure 2. Baq ah burial cave: anklet in-situ, next to a chalice and lamp.

Figure 3. Cross-section of anklet/bracelet from Baq`ah burial cave, showing extensive inhomogeneous carburization with Widmanstätten patterning. ered medieval Islamic smelting operations, but preliminary surveys at a site only 10 km (6 miles) north of the Baq`ah, Dhahrat Abu Thawab, have yielded early Iron-Age sherds. The chemical composition of one well-fused piece of slag from the latter site, as determined by proton-induced x-ray emission spectroscopy, is close to that of one of the Baq ah iron/steel artifacts, particularly in its elevated cobalt content. This is even more noteworthy because a few red glass beads, found in association with the iron/steel artifacts in the Baq'ah burial cave, also show elevated cobalt. Since the glass has a very high iron-oxide content (48%), it is quite possibly a reworked slag, perhaps a spin-off product of the primary metals industry. ${ }^{11}$
Dhahrat Abu Thawab is in the midst of a fertile area at a higher elevation than the Baq`ah along the watershed, and probably received more rainfall in antiquity than it does today. In a period of climatic deterioration such as the late Late Bronze and early Iron Ages are projected to have been, it would have been a preferred direction of migration. The area also includes extensive tracts of oak foresting, which could have met building and, especially, fuel needs.
It may be suggested that native metalsmiths only began to exploit an ore deposit in the Abu Thawab area on a large scale when the Late Bronze culture began to disintegrate and decentralize. It is also possible that metalsmiths from farther south, who were associated with the copper industry in the Wadi Arabah, may have contributed to the development of the new technology (the prevalence of Red Sea molluses in the Baq'ah burial cave is evidence of such contact).

SOME REMAINING CONSIDERATIONS

Until the Abu Thawab smelting site is excavated, we cannot be certain whether this was a source of the Baq ah steel or was even in operation during the Late Bronze-early Iron Age transitional period. As a final note of Transjordan's crucial place in understanding the origins of iron ore smelting and metalworking in the ancient Near East, mention should be made of the recent discovery (1987) of another large group of iron artifacts from an early Iron-Age burial cave with over a hundred individuals, at Pella in the northern Jordan Valley. ${ }^{12}$ The vast majority of the iron artifacts from the Pella tomb were anklets/bracelets and rings of the same types as those from the Baq ah tomb.
The Pella discovery is intriguing in view of a single piece of steel from the

$10 \mu \mathrm{~m}$
Figure 4. Scanning electron micrograph, nital etch, of anklet/bracelet used in Figure 3. Nodular carbides are visible at the interface between pearlite and ferrite regions.
same site, reported to be of Middle Bronze-Age date, ${ }^{13}$ over 500 years earlier than the early Iron Age group. Unless the time gap can be explained, it is likely that the earlier Pella piece is a later intrusion. ${ }^{12}$ From the burial cave evidence at Pella, a picture of early ironworking very similar to that in the Baq ${ }^{\prime}$ ah is emerging (viz., limited amounts of iron are found toward the end of the Late Bronze Age and then much larger quantities during the early Iron Age). As yet, detailed metallographic study of the Late Bronze/ early Iron Pella artifacts has not been carried out, but their contemporaneity and stylistic similarities with the Baq`ah artifacts strongly imply that they could also be made of steel.

ACKNOWLEDGMENTS

At Lehigh University, M.R. Notis, together with his colleagues H. Moyer, K.H. Liu and H. Chan, are to be thanked for their thorough analysis of the Baq`ah artifacts. At MASCA, V.C. Pigott was instrumental in coordinating and interpreting the analytical results within an archaeometallurgical framework. The PIXE analyses were carried out through the kind auspices of C.P. Swann (Bartol Research Institute) and S.J. Fleming (MASCA). D. Calvert, J. Michael, and S. Bauman at Lehigh assisted in specimen preparation and microscopy.

References

1. J.C. Waldbaum, "From Bronze to Iron: The Transition from the Bronze Age to the Iron Age in the Eastern
Mediterranean," Studies in Mediterranean Archaeology Mediterranean," Studies in Mediterranean Archaeology,
54 (Göteborg: Studies in Mediterranean Archaeology, 1978).
2. P.E. McGovern, "The Late Bronze and Early Iron Ages of Central Transjordan: The Baq' ah Valley Project, 19771981," University Museum Monograph 65, University
Museum, Philadel Museum, Philadelphia (1986).
and R. Maddin, "Iron J.D. Muhly, K.R. Maxwell-Hyslop and R. Maddin, "Iron at Taanach and Early Iron Metallurgy in the Eastern Mediterranean," Ame
of Archaeology, 85 (1981), pp. 245-268, 481.
3. C.S. Smith, "On the Nature of Iron," Made of Iron, Houston: University of St. Thomas Art Dept. (1966), pp. 27-41.
4. This interpretation is based upon the work of M.R. Notis and H . Chan, using electron energy loss spectroscopy to dentify carbide precipitates.
. R. Pleiner, "Problem of Direct Steel Production in Early Ferrous Metallurgy," Steel Times (May 1968), pp. 312 318.

Comm. Wright, "Iron: The Date of Its Introduction into haeolog Use in Palestine," American Journal of Ar . A.M. Snodgrass, pp. 458-463.
University, Edinburgh (1971). 9. S.H. Basha, Stratigraphic Accumulation, Origin and Prospection of Iron Ore Deposits at Warda-Southern Ajlun District, Natural Resources Authority, Amman (1968). 10. R.A. Coughenour, "Preliminary Report on the Exploration and Excavation of Mugharatel Wardeh and Abu hawab," Annual of the Department of Antiquities of ordan, 21 (1976), pp. 71-78.

1. P.E. McGovern, "Silicate Industries of Late BronzeEgypt and the Levant," Early Vitreous Maction between Bimson and I.C. Freestone, eds., British Maseum Occasional Paper 56, British Museum Research Laboratory, London (1987), pp. 91-114.
2. Personal communication, S.J. Bourke, excavator of tomb and member of University of Sydney (Australia expedition) under the direction of J.B. Hennessy (May 19, 988).
3. R.H. Smith, R. Maddin, J.D. Muhly and T. Stech, "Bronze Age Steel from Pella, Jordan," Current Anropology, 25 (1984), pp. 234-236.

If you want more information on this subject, please circle reader service card number 60.

